3.135 \(\int \frac{\sec (e+f x) \sqrt{c-c \sec (e+f x)}}{\sqrt{a+a \sec (e+f x)}} \, dx\)

Optimal. Leaf size=50 \[ -\frac{c \tan (e+f x) \log (\sec (e+f x)+1)}{f \sqrt{a \sec (e+f x)+a} \sqrt{c-c \sec (e+f x)}} \]

[Out]

-((c*Log[1 + Sec[e + f*x]]*Tan[e + f*x])/(f*Sqrt[a + a*Sec[e + f*x]]*Sqrt[c - c*Sec[e + f*x]]))

________________________________________________________________________________________

Rubi [A]  time = 0.122232, antiderivative size = 50, normalized size of antiderivative = 1., number of steps used = 1, number of rules used = 1, integrand size = 36, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.028, Rules used = {3952} \[ -\frac{c \tan (e+f x) \log (\sec (e+f x)+1)}{f \sqrt{a \sec (e+f x)+a} \sqrt{c-c \sec (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Int[(Sec[e + f*x]*Sqrt[c - c*Sec[e + f*x]])/Sqrt[a + a*Sec[e + f*x]],x]

[Out]

-((c*Log[1 + Sec[e + f*x]]*Tan[e + f*x])/(f*Sqrt[a + a*Sec[e + f*x]]*Sqrt[c - c*Sec[e + f*x]]))

Rule 3952

Int[(csc[(e_.) + (f_.)*(x_)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_)])/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) +
(a_)], x_Symbol] :> Simp[(a*c*Log[1 + (b*Csc[e + f*x])/a]*Cot[e + f*x])/(b*f*Sqrt[a + b*Csc[e + f*x]]*Sqrt[c +
 d*Csc[e + f*x]]), x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0]

Rubi steps

\begin{align*} \int \frac{\sec (e+f x) \sqrt{c-c \sec (e+f x)}}{\sqrt{a+a \sec (e+f x)}} \, dx &=-\frac{c \log (1+\sec (e+f x)) \tan (e+f x)}{f \sqrt{a+a \sec (e+f x)} \sqrt{c-c \sec (e+f x)}}\\ \end{align*}

Mathematica [C]  time = 0.37146, size = 140, normalized size = 2.8 \[ \frac{i \left (1+e^{i (e+f x)}\right ) \sqrt{\frac{c \left (-1+e^{i (e+f x)}\right )^2}{1+e^{2 i (e+f x)}}} \left (2 \log \left (1+e^{i (e+f x)}\right )-\log \left (1+e^{2 i (e+f x)}\right )\right )}{f \left (-1+e^{i (e+f x)}\right ) \sqrt{\frac{a \left (1+e^{i (e+f x)}\right )^2}{1+e^{2 i (e+f x)}}}} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sec[e + f*x]*Sqrt[c - c*Sec[e + f*x]])/Sqrt[a + a*Sec[e + f*x]],x]

[Out]

(I*(1 + E^(I*(e + f*x)))*Sqrt[(c*(-1 + E^(I*(e + f*x)))^2)/(1 + E^((2*I)*(e + f*x)))]*(2*Log[1 + E^(I*(e + f*x
))] - Log[1 + E^((2*I)*(e + f*x))]))/((-1 + E^(I*(e + f*x)))*Sqrt[(a*(1 + E^(I*(e + f*x)))^2)/(1 + E^((2*I)*(e
 + f*x)))]*f)

________________________________________________________________________________________

Maple [B]  time = 0.303, size = 116, normalized size = 2.3 \begin{align*} -{\frac{\cos \left ( fx+e \right ) }{af\sin \left ( fx+e \right ) } \left ( \ln \left ( -{\frac{-1+\cos \left ( fx+e \right ) +\sin \left ( fx+e \right ) }{\sin \left ( fx+e \right ) }} \right ) +\ln \left ( -{\frac{-1+\cos \left ( fx+e \right ) -\sin \left ( fx+e \right ) }{\sin \left ( fx+e \right ) }} \right ) \right ) \sqrt{{\frac{c \left ( -1+\cos \left ( fx+e \right ) \right ) }{\cos \left ( fx+e \right ) }}}\sqrt{{\frac{a \left ( 1+\cos \left ( fx+e \right ) \right ) }{\cos \left ( fx+e \right ) }}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(f*x+e)*(c-c*sec(f*x+e))^(1/2)/(a+a*sec(f*x+e))^(1/2),x)

[Out]

-1/f/a*(ln(-(-1+cos(f*x+e)+sin(f*x+e))/sin(f*x+e))+ln(-(-1+cos(f*x+e)-sin(f*x+e))/sin(f*x+e)))*cos(f*x+e)*(c*(
-1+cos(f*x+e))/cos(f*x+e))^(1/2)*(1/cos(f*x+e)*a*(1+cos(f*x+e)))^(1/2)/sin(f*x+e)

________________________________________________________________________________________

Maxima [A]  time = 1.52388, size = 86, normalized size = 1.72 \begin{align*} -\frac{\frac{\sqrt{c} \log \left (\frac{\sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} + 1\right )}{\sqrt{-a}} + \frac{\sqrt{c} \log \left (\frac{\sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} - 1\right )}{\sqrt{-a}}}{f} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)*(c-c*sec(f*x+e))^(1/2)/(a+a*sec(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

-(sqrt(c)*log(sin(f*x + e)/(cos(f*x + e) + 1) + 1)/sqrt(-a) + sqrt(c)*log(sin(f*x + e)/(cos(f*x + e) + 1) - 1)
/sqrt(-a))/f

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{-c \sec \left (f x + e\right ) + c} \sec \left (f x + e\right )}{\sqrt{a \sec \left (f x + e\right ) + a}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)*(c-c*sec(f*x+e))^(1/2)/(a+a*sec(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(-c*sec(f*x + e) + c)*sec(f*x + e)/sqrt(a*sec(f*x + e) + a), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{- c \left (\sec{\left (e + f x \right )} - 1\right )} \sec{\left (e + f x \right )}}{\sqrt{a \left (\sec{\left (e + f x \right )} + 1\right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)*(c-c*sec(f*x+e))**(1/2)/(a+a*sec(f*x+e))**(1/2),x)

[Out]

Integral(sqrt(-c*(sec(e + f*x) - 1))*sec(e + f*x)/sqrt(a*(sec(e + f*x) + 1)), x)

________________________________________________________________________________________

Giac [A]  time = 1.63163, size = 116, normalized size = 2.32 \begin{align*} \frac{c^{2} \log \left ({\left | c \tan \left (\frac{1}{2} \, f x + \frac{1}{2} \, e\right )^{2} - c \right |}\right ) \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, f x + \frac{1}{2} \, e\right )^{3} + \tan \left (\frac{1}{2} \, f x + \frac{1}{2} \, e\right )\right ) \mathrm{sgn}\left (\cos \left (f x + e\right )\right )}{\sqrt{-a c} f{\left | c \right |} \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, f x + \frac{1}{2} \, e\right )^{2} - 1\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)*(c-c*sec(f*x+e))^(1/2)/(a+a*sec(f*x+e))^(1/2),x, algorithm="giac")

[Out]

c^2*log(abs(c*tan(1/2*f*x + 1/2*e)^2 - c))*sgn(tan(1/2*f*x + 1/2*e)^3 + tan(1/2*f*x + 1/2*e))*sgn(cos(f*x + e)
)/(sqrt(-a*c)*f*abs(c)*sgn(tan(1/2*f*x + 1/2*e)^2 - 1))